Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Transl Pediatr ; 13(2): 248-259, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455742

RESUMO

Background: The neutrophil-lymphocyte ratio (NLR) is an easily accessible and inexpensive biomarker that has been shown to predict morbidity and mortality in congenital cardiac surgery. However, its regulatory mechanism remains unclear. This study aims to compare and correlate the tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and IL-10 messenger RNAs (mRNAs) with the NLR in patients with tetralogy of Fallot (ToF) and ventricular septal defect (VSD). Methods: A prospective translational study was conducted on 10 children with ToF and 10 with VSD, aged between 1 and 24 months. The NLR was calculated from the blood count taken 24 hours before surgery. The expression of these mRNAs was analyzed in the myocardial tissue of the right atrium prior to cardiopulmonary bypass. Results: Patients with ToF exhibited a higher NLR [ToF 0.46 (interquartile range; IQR) 0.90; VSD 0.28 (IQR 0.17); P=0.02], longer mechanical ventilation time [ToF 24 h (IQR 93); VSD 5.5 h (IQR 8); P<0.001], increased use of vasoactive drugs [ToF 2 days (IQR 1.75); VSD 0 (IQR 1); P=0.01], and longer ICU [ToF 5.5 (IQR 1); VSD 2 (IQR 0.75); P=0.02] and hospital length of stays [ToF 18 days (IQR 17.5); VSD 8.5 days (IQR 2.5); P<0.001]. A negative correlation was found between NLR and oxygen saturation (SaO2) (r=-0.44; P=0.002). In terms of mRNA expression, the ToF group showed a lower expression of IL-10 mRNA (P=0.03). A positive correlation was observed between IL-10-mRNA and SaO2 (r=0.40; P=0.07), and a negative correlation with NLR (r=-0.27; P=0.14). Conclusions: Patients with ToF demonstrated a higher preoperative NLR and lower IL-10 mRNA expression by what appears to be a pro-inflammatory phenotype of cyanotic patients.

2.
Mol Syst Biol ; 19(12): e11462, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38031960

RESUMO

Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.


Assuntos
Biologia de Sistemas , RNA Interferente Pequeno
3.
Trends Mol Med ; 29(7): 541-553, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173223

RESUMO

Preeclampsia, one of the main hypertensive disorders of pregnancy, is associated with circulating factors released by the ischemic placenta accompanied by systemic endothelial dysfunction. The etiology of preeclampsia remains poorly understood although it is associated with high maternal and fetal mortality and increased cardiovascular disease risk. Most cell model systems used for studying endothelial dysfunction have not taken into account hemodynamic physical factors such as shear-stress forces which may prevent extrapolation of cell data to in vivo settings. We overview the role of hemodynamic forces in modulating endothelial cell function and discuss strategies to reproduce this biological characteristic in vitro to improve our understanding of endothelial dysfunction associated with preeclampsia.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/etiologia , Placenta , Isquemia , Células Endoteliais
4.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154550

RESUMO

Coronary artery bypass graft (CABG) surgery is a procedure to revascularize ischemic myocardium. Saphenous vein remains used as a CABG conduit despite the reduced long-term patency compared to arterial conduits. The abrupt increase of hemodynamic stress associated with the graft arterialization results in vascular damage, especially the endothelium, that may influence the low patency of the saphenous vein graft (SVG). Here, we describe the isolation, characterization, and expansion of human saphenous vein endothelial cells (hSVECs). Cells isolated by collagenase digestion display the typical cobblestone morphology and express endothelial cell markers CD31 and VE-cadherin. To assess the mechanical stress influence, protocols were used in this study to investigate the two main physical stimuli, shear stress and stretch, on arterialized SVGs. hSVECs are cultured in a parallel plate flow chamber to produce shear stress, showing alignment in the direction of the flow and increased expression of KLF2, KLF4, and NOS3. hSVECs can also be cultured in a silicon membrane that allows controlled cellular stretch mimicking venous (low) and arterial (high) stretch. Endothelial cells' F-actin pattern and nitric oxide (NO) secretion are modulated accordingly by the arterial stretch. In summary, we present a detailed method to isolate hSVECs to study the influence of hemodynamic mechanical stress on an endothelial phenotype.


Assuntos
Células Endoteliais , Veia Safena , Humanos , Veia Safena/cirurgia , Estresse Mecânico , Ponte de Artéria Coronária/métodos , Endotélio Vascular/metabolismo , Grau de Desobstrução Vascular
5.
Front Physiol ; 14: 1252470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173933

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease for which surgical or endovascular repair are the only currently available therapeutic strategies. The development of AAA involves the breakdown of elastic fibers (elastolysis), infiltration of inflammatory cells, and apoptosis of smooth muscle cells (SMCs). However, the specific regulators governing these responses remain unknown. We previously demonstrated that Cysteine and glycine-rich protein 3 (Crp3) sensitizes SMCs to apoptosis induced by stretching. Building upon this finding, we aimed to investigate the influence of Crp3 on elastolysis and apoptosis during AAA development. Using the elastase-CaCl2 rat model, we observed an increase in Crp3 expression, aortic diameter, and a reduction in wall thickness in wild type rats. In contrast, Crp3-/- rats exhibited a decreased incidence of AAA, with minimal or no changes in aortic diameter and thickness. Histopathological analysis revealed the absence of SMC apoptosis and degradation of elastic fibers in Crp3-/- rats, accompanied by reduced inflammation and diminished proteolytic capacity in Crp3-/- SMCs and bone marrow-derived macrophages. Collectively, our findings provide evidence that Crp3 plays a crucial role in AAA development by modulating elastolysis, inflammation, and SMC apoptosis. These results underscore the potential significance of Crp3 in the context of AAA progression and offer new insights into therapeutic targets for this disease.

6.
Biochem Biophys Res Commun ; 533(3): 376-382, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962862

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Conexinas/genética , Conexinas/metabolismo , Contactina 2/genética , Contactina 2/metabolismo , Estimulação Elétrica , Expressão Gênica , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/fisiologia , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Cultura Primária de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Physiol Genomics ; 49(12): 712-721, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986396

RESUMO

Emerging evidence suggests that both systemic and white adipose tissue-renin-angiotensin system components influence body weight control. We previously demonstrated that higher angiotensin-converting enzyme (ACE) gene expression is associated with lower body adiposity in a rodent model. In this study, we tested the hypothesis that a higher ACE gene dosage reduces fat accumulation by increasing energy expenditure and modulating lipolysis and glucose incorporation into lipids in adipocytes. After a 12 wk follow-up period, transgenic mice harboring three ACE (3ACE) gene copies displayed diminished WAT mass, lipid content in their carcasses, adipocyte hypotrophy, and higher resting oxygen uptake (V̇o2) in comparison with animals with one ACE gene copy (1ACE) after long fasting (12 h). No differences were found in food intake and in the rates of lipolysis and glucose incorporation into lipids in adipocytes. To assess whether this response involves increased angiotensin II type I receptor (AT1R) activation, AT1R blocker (losartan) was used in a separate group of 3ACE mice with body weight and adiposity comparable to that in the other 3ACE animals. We suggest that fasting-induced lower adiposity observed in animals with 3ACE gene copies might be associated with a higher expense of energy reserves; this response did not involve AT1R activation.


Assuntos
Glucose/metabolismo , Tecido Adiposo/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Lipólise
8.
Biochem Biophys Res Commun ; 483(1): 75-81, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28062183

RESUMO

Recent evidence suggests that ß-arrestins, which are involved in G protein-coupled receptors desensitization, may influence mechanotransduction. Here, we observed that nitric oxide (NO) production was abrogated in human saphenous vein endothelial cells (SVECs) transfected with siRNA against ß-arrestin 1 and 2 subjected to shear stress (SS, 15 dynes/cm2, 10 min). The downregulation of ß-arrestins 1/2 in SVECs cells also prevented the SS-induced rise in levels of phosphorylation of Akt and endothelial nitric oxide synthase (eNOS, Serine 1177). Interestingly, immunoprecipitation revealed that ß-arrestin interacts with Akt, eNOS and caveolin-1 and these interactions are not influenced by SS. Our data indicate that ß-arrestins and Akt/eNOS downstream signaling are required for early SS-induced NO production in SVECs, which is consistent with the idea that ß-arrestins and caveolin-1 are part of a pre-assembled complex associated with the cellular mechanotransduction machinery.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , Caveolina 1/metabolismo , Células Cultivadas , Regulação para Baixo , Humanos , Mecanotransdução Celular/fisiologia , Fosforilação , RNA Interferente Pequeno/genética , Transdução de Sinais , Estresse Mecânico , beta-Arrestina 1/antagonistas & inibidores , beta-Arrestina 1/genética , beta-Arrestina 2/antagonistas & inibidores , beta-Arrestina 2/genética
9.
Rev. bras. cir. cardiovasc ; 28(4): 482-490, out.-dez. 2013. ilus, tab
Artigo em Português | LILACS | ID: lil-703116

RESUMO

OBJETIVO: O aumento da atividade miocárdica da Glicose 6-Fosfato Desidrogenase tem sido demonstrado na insuficiência cardíaca. Este estudo avalia a atividade miocárdica da Glicose 6-Fosfato Desidrogenase no treinamento do ventrículo subpulmonar de cabras adultas. MÉTODOS: Foram utilizadas 18 cabras adultas, divididas em três grupos: convencional (bandagem fixa), sham e intermitente (bandagem ajustável; 12 horas diárias de sobrecarga). A sobrecarga sistólica (70% da pressão sistêmica) foi mantida durante quatro semanas. As avaliações hemodinâmica e ecocardiográfica foram realizadas durante todo o estudo. Depois de cumprido o protocolo, os animais foram mortos para avaliação morfológica e da atividade da Glicose 6-Fosfato Desidrogenase dos ventrículos. RESULTADOS: Apesar de haver sobrecarga sistólica proporcionalmente menor no ventrículo subpulmonar do grupo intermitente (P=0,001), ambos os grupos de estudo apresentaram aumento da massa muscular de magnitude similar. Os grupos intermitente e convencional apresentaram aumento da massa de 55,7% e 36,7% (P<0,05), respectivamente, em comparação ao grupo sham. O conteúdo de água do miocárdio não variou entre os grupos estudados (P=0,27). O ecocardiograma demonstrou maior aumento (37,2%) na espessura do ventrículo subpulmonar do grupo intermitente, em relação aos grupos sham e convencional (P<0,05). Foi observada maior atividade da Glicose 6-Fosfato Desidrogenase na hipertrofia miocárdica do ventrículo subpulmonar do grupo convencional, comparada aos grupos sham e intermitente (P=0,05). CONCLUSÃO: Ambos os grupos de treinamento ventricular desenvolveram hipertrofia ventricular, a despeito do menor tempo de sobrecarga sistólica no grupo intermitente. A maior atividade de Glicose 6-Fosfato Desidrogenase observada no grupo convencional pode refletir um desequilíbrio redox, com maior produção de fosfato de dinucleotídeo de nicotinamida e adenina e glutationa reduzida, um mecanismo importante da fisiopatologia da insuficiência cardíaca.


OBJECTIVE: Increased glucose 6-phosphate dehydrogenase activity has been demonstrated in heart failure. This study sought to assess myocardial glucose 6-phosphate dehydrogenase activity in retraining of the subpulmonary ventricle of adult goats. METHODS: Eighteen adult goats were divided into three groups: traditional (fixed banding), sham, and intermittent (adjustable banding, daily 12-hour systolic overload). Systolic overload (70% of systemic pressure) was maintained during a 4-week period. Right ventricle, pulmonary artery and aortic pressures were measured throughout the study. All animals were submitted to echocardiographic and hemodynamic evaluations throughout the protocol. After the study period, the animals were killed for morphological and glucose 6-phosphate dehydrogenase activity assessment. RESULTS: A 55.7% and 36.7% increase occurred in the intermittent and traditional right ventricle masses, respectively, when compared with the sham group (P<0.05), despite less exposure of intermittent group to systolic overload. No significant changes were observed in myocardial water content in the 3 groups (P=0.27). A 37.2% increase was found in right ventricle wall thickness of intermittent group, compared to sham and traditional groups (P<0.05). Right ventricle glucose 6-phosphate dehydrogenase activity was elevated in the traditional group, when compared to sham and intermittent groups (P=0.05). CONCLUSION: Both study groups have developed similar right ventricle hypertrophy, regardless less systolic overload exposure of intermittent group. Traditional systolic overload for adult subpulmonary ventricle retraining causes upregulation of myocardial glucose 6-phosphate dehydrogenase activity. It may suggest that the undesirable "pathologic systolic overload" is influenced by activation of penthose pathway and cytosolic Nicotinamide adenine dinucleotide phosphate availability. This altered energy substrate metabolism can elevate levels of free radicals by Nicotinamide adenine dinucleotide phosphate oxidase, an important mechanism in the pathophysiology of heart failure.


Assuntos
Animais , Glucosefosfato Desidrogenase/metabolismo , Hipertrofia Ventricular Direita/enzimologia , Miocárdio/enzimologia , Artéria Pulmonar/cirurgia , Transposição dos Grandes Vasos/cirurgia , Pressão Sanguínea , Biomarcadores/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Cabras , Hemodinâmica , Ventrículos do Coração/enzimologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Fatores de Tempo , Disfunção Ventricular Direita/enzimologia , Disfunção Ventricular Direita/fisiopatologia
10.
Rev Bras Cir Cardiovasc ; 28(4): 482-90, 2013.
Artigo em Inglês, Português | MEDLINE | ID: mdl-24598953

RESUMO

OBJECTIVE: Increased glucose 6-phosphate dehydrogenase activity has been demonstrated in heart failure. This study sought to assess myocardial glucose 6-phosphate dehydrogenase activity in retraining of the subpulmonary ventricle of adult goats. METHODS: Eighteen adult goats were divided into three groups: traditional (fixed banding), sham, and intermittent (adjustable banding, daily 12-hour systolic overload). Systolic overload (70% of systemic pressure) was maintained during a 4-week period. Right ventricle, pulmonary artery and aortic pressures were measured throughout the study. All animals were submitted to echocardiographic and hemodynamic evaluations throughout the protocol. After the study period, the animals were killed for morphological and glucose 6-phosphate dehydrogenase activity assessment. RESULTS: A 55.7% and 36.7% increase occurred in the intermittent and traditional right ventricle masses, respectively, when compared with the sham group (P<0.05), despite less exposure of intermittent group to systolic overload. No significant changes were observed in myocardial water content in the 3 groups (P=0.27). A 37.2% increase was found in right ventricle wall thickness of intermittent group, compared to sham and traditional groups (P<0.05). Right ventricle glucose 6-phosphate dehydrogenase activity was elevated in the traditional group, when compared to sham and intermittent groups (P=0.05). CONCLUSION: Both study groups have developed similar right ventricle hypertrophy, regardless less systolic overload exposure of intermittent group. Traditional systolic overload for adult subpulmonary ventricle retraining causes upregulation of myocardial glucose 6-phosphate dehydrogenase activity. It may suggest that the undesirable "pathologic systolic overload" is influenced by activation of penthose pathway and cytosolic Nicotinamide adenine dinucleotide phosphate availability. This altered energy substrate metabolism can elevate levels of free radicals by Nicotinamide adenine dinucleotide phosphate oxidase, an important mechanism in the pathophysiology of heart failure.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Hipertrofia Ventricular Direita/enzimologia , Miocárdio/enzimologia , Artéria Pulmonar/cirurgia , Transposição dos Grandes Vasos/cirurgia , Animais , Biomarcadores/metabolismo , Pressão Sanguínea , Modelos Animais de Doenças , Metabolismo Energético , Cabras , Ventrículos do Coração/enzimologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Hipertrofia Ventricular Direita/fisiopatologia , Fatores de Tempo , Disfunção Ventricular Direita/enzimologia , Disfunção Ventricular Direita/fisiopatologia
11.
J Endocrinol ; 198(1): 51-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18451064

RESUMO

Obesity and insulin resistance are highly correlated with metabolic disturbances. Both the excess and lack of adipose tissue can lead to severe insulin resistance and diabetes. Adipose tissue plays an active role in energy homeostasis, hormone secretion, and other proteins that affect insulin sensitivity, appetite, energy balance, and lipid metabolism. Rats with streptozotocin-induced diabetes during the neonatal period develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, and insulin resistance in adulthood. Low body weight and reduced epididymal (EP) fat mass were also seen in this model. The aim of this study was to investigate the glucose homeostasis and metabolic repercussions on the adipose tissue following chronic treatment with antidiabetic drugs in these animals. In the 4th week post birth, diabetic animals started an 8-week treatment with pioglitazone, metformin, or insulin. Animals were then killed, EP fat pads were excised, and blood samples were collected for biological and biochemical assays. Pioglitazone and insulin treatments, but not metformin, reduced hyperglycemia, polydipsia, and polyphagia. Although all antidiabetic therapies improved insulin sensitivity, this was particularly noteworthy in the pioglitazone-treated rats. Furthermore, a recovery of adipose mass and insulin levels were observed in pioglitazone- and insulin-, but not metformin-treated animals. Treatments with insulin or pioglitazone were able to correct significantly, but not completely, the metabolic abnormalities, parallel to full recovery of adipose mass, indicating that not only the low insulin levels but also the lack of adipose tissue might play a significant role on the pathophysiology of this particular diabetes model.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Animais , Peptídeo C/análise , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/análise , Transportador de Glucose Tipo 4/genética , Glicerídeos/sangue , Lipólise/efeitos dos fármacos , Masculino , Pioglitazona , RNA Mensageiro/análise , Ratos , Ratos Wistar , Estreptozocina , Tiazolidinedionas/farmacologia
12.
J Pediatr (Rio J) ; 83(5 Suppl): S192-203, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17989837

RESUMO

OBJECTIVE: To describe the advances in research into the physiological role of white adipose tissue, with emphasis on its endocrinal role in inflammatory processes, feeding behavior, insulin sensitization and modulation of the atherogenetic process. To deal with the potential role of adipose tissue as a source of stem cells for regeneration of tissues, with special emphasis on adipogenesis and its consequences for development of obesity. SOURCES: Important information was compiled from the scientific literature in order that this analysis contains an explanatory synthesis of the aspects mentioned above. SUMMARY OF THE FINDINGS In addition to its classical functions as primary metabolic energy store, meeting energy requirements during periods of deprivation by means of lypolisis, adipose tissue also has the capacity to synthesize and secrete a variety of hormones - the adipokines. These are active in a range of processes, such as control of nutritional intake (leptin) and control of sensitivity to insulin and inflammatory processes (TNF-alpha, IL-6, resistin, visfatin, adiponectin). Furthermore, since adipose tissue also contains undifferentiated cells, it has the ability to generate new adipocytes, regenerating its own tissue (adipogenesis), and also the ability to give rise to other cells (myoblasts, chondroblasts, osteoblasts), which has great therapeutic potential in the not-too-distant future. CONCLUSIONS: The range of functional possibilities of adipose tissue has widened. An understanding of these potentials could make this tissue a great ally in the fight against conditions that are currently assuming epidemic proportions (obesity, diabetes mellitus, arterial hypertension and arteriosclerosis) and in which adipose tissue is still seen as the enemy.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Glândulas Endócrinas/metabolismo , Adipócitos/patologia , Adipogenia/fisiologia , Adipocinas/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo Marrom , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Doenças Cardiovasculares/patologia , Diabetes Mellitus/metabolismo , Glândulas Endócrinas/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipogênese/fisiologia , Lipólise/fisiologia , Obesidade/metabolismo
13.
J. pediatr. (Rio J.) ; 83(5,supl): S192-S203, Nov. 2007. ilus, tab
Artigo em Inglês | LILACS | ID: lil-470332

RESUMO

OBJETIVOS Mostrar os avanços na pesquisa sobre o papel fisiológico do tecido adiposo branco, ressaltando o seu papel endócrino em processos inflamatórios, no comportamento alimentar, na sensibilização à insulina e na modulação do processo de aterogênese. Abordar o potencial papel do tecido adiposo como fonte de células-tronco para regeneração de tecidos, com especial ênfase para a adipogênese e suas conseqüências para a geração de obesidade. FONTES DE DADOS: Informações importantes constantes da literatura científica foram compiladas de modo a que esta leitura contenha uma síntese esclarecedora dos aspectos mencionados acima. SÍNTESE DOS DADOS:O tecido adiposo possui, além das suas funções clássicas como principal estoque de energia metabólica, suprindo as necessidades energéticas em períodos de carência mediante a lipólise, a capacidade de sintetizar e secretar vários hormônios, as adipocinas. Estas agem em diversos processos, como o controle da ingestão alimentar (leptina) e o controle da sensibilidade à insulina e de processos inflamatórios (TNF-alfa, IL-6, resistina, visfatina, adiponectina). Além disso, como o tecido adiposo contém também células indiferenciadas, tem a habilidade de gerar novos adipócitos, regenerando o próprio tecido (adipogênese), bem como originar outras células (mioblastos, condroblastos, osteoblastos), fato este que tem grande potencial terapêutico em futuro não muito distante. CONCLUSÃO: Amplia-se o leque de possibilidades funcionais do tecido adiposo. A compreensão dessas potencialidades pode fazer deste tecido o grande aliado no combate de moléstias que atualmente vêm assumindo proporções epidêmicas (obesidade, diabetes melito, hipertensão arterial e arteriosclerose), nas quais o tecido adiposo ainda é tido como um grande vilão.


OBJECTIVES: To describe the advances in research into the physiological role of white adipose tissue, with emphasis on its endocrinal role in inflammatory processes, feeding behavior, insulin sensitization and modulation of the atherogenetic process. To deal with the potential role of adipose tissue as a source of stem cells for regeneration of tissues, with special emphasis on adipogenesis and its consequences for development of obesity. SOURCES: Important information was compiled from the scientific literature in order that this analysis contains an explanatory synthesis of the aspects mentioned above. SUMMARY OF THE FINDINGS In addition to its classical functions as primary metabolic energy store, meeting energy requirements during periods of deprivation by means of lypolisis, adipose tissue also has the capacity to synthesize and secrete a variety of hormones - the adipokines. These are active in a range of processes, such as control of nutritional intake (leptin) and control of sensitivity to insulin and inflammatory processes (TNF-alpha, IL-6, resistin, visfatin, adiponectin). Furthermore, since adipose tissue also contains undifferentiated cells, it has the ability to generate new adipocytes, regenerating its own tissue (adipogenesis), and also the ability to give rise to other cells (myoblasts, chondroblasts, osteoblasts), which has great therapeutic potential in the not-too-distant future. CONCLUSIONS: The range of functional possibilities of adipose tissue has widened. An understanding of these potentials could make this tissue a great ally in the fight against conditions that are currently assuming epidemic proportions (obesity, diabetes mellitus, arterial hypertension and arteriosclerosis) and in which adipose tissue is still seen as the enemy.


Assuntos
Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Glândulas Endócrinas/metabolismo , Tecido Adiposo Marrom , Adipócitos/patologia , Adipogenia/fisiologia , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Tecido Adiposo/patologia , Doenças Cardiovasculares/patologia , Diabetes Mellitus/metabolismo , Glândulas Endócrinas/patologia , Inflamação/metabolismo , Inflamação/patologia , Lipogênese/fisiologia , Lipólise/fisiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...